Variable Polyadicity Without Events:
A Type-Theoretic Analysis of Event Semantics*

Luo, Z.! and Shi, Y.%!

Dept of Computer Science, Royal Holloway, Univ of London
2School of Marxism, West Anhui University

Abstract

Davidsonian event semantics [14] is widely accepted as a powerful
framework for formal semantics. It has brought about many benefits in
semantic construction, which may be summarised into two categories:
one is to provide a satisfactory solution to a seemingly intractable prob-
lem of variable polyadicity, and the other consists of those benefits that
come from the availability of the entities called events that correspond
to verb actions.

This paper provides an analysis of event semantics from a general
viewpoint of dependent type theory. First, it is shown that the problem
of variable polyadicity can be solved by means of dependent typing,
without the employment of events. To do this, we only extend the sim-
ple type theory with two type constructors and the resulting semantic
definitions not only allow variable polyadicity as desired, but obtain
logical inferences as expected. We shall discuss why the solution is
natural from a type-theoretical point of view (as compared with that
in set theory).

We then discuss that most (if not all) of the other benefits of event
semantics may already be obtained by alternative means without in-
troducing events as ontological entities. To this end, we consider the
evidence for event semantics discussed by Parsons [37], focusing on two
particular aspects: event talks and perception words, showing that the
former is mostly concerned with timing, and the latter can be dealt
with as a special case without introducing events in general.

*This work is partially supported by the EU research network EuroProofNet (COST
CA20111) and the China Scholarship Council (Dr Shi, the corresponding author, partici-
pated in this work mainly when he was visiting RHUL.) It is also an interim achievement of
the Anhui Provincial Philosophy and Social Sciences Planning Project AHSKY?2022D229.

1 Introduction

Event semantics originates from Davidson’s work in the 1960s [14] to solve
the problem of variable polyadicity in modelling adverbial modification, and
was further developed in the neo-Davidsonian turn (see Parsons’ work [37]
among others). Since its emergence more than half a century ago, it has
become very popular and widely accepted as a powerful approach to formal
semantics.

The benefits of event semantics may be summarised into two categories:
one is to provide a satisfactory solution to a seemingly intractable problem
of variable polyadicity, and the other consists of those benefits that come
from the availability of the entities called events that correspond to verb
actions. In this paper, we conduct an analysis of the issues and problems in
these two categories, whose solutions have benefited from event semantics,
and show that dependent typing presents a new perspective in their studies.

In this section, we first describe the problem of variable polyadicity and
then explain how event semantics solves it. Then, in the third subsection,
we sketch our main contributions and give a summary of the paper.

1.1 Variable polyadicity

The original motivation for event semantics came from the study of the
problem of variable polyadicity [14, 27]. Davidson [14] points out that due
to the problem, traditional logical semantics of adverbial modification is
unsatisfactory, and introducing the notion of event is a good way to solve
the problem.

The variable polyadicity problem can be illustrated by means of the
following example sentences (1) and (2), where the latter has got two more
adverbial modification phrases:

(1) John buttered the toast.
(2) John buttered the toast with the knife in the kitchen.

It is clear that there can be indefinitely many adverbial modification phrases
in such sentence formations.!

A question is: in the above sentences, what is the semantic interpretation
of the verb ‘butter’? In a tentative attempt, one might consider that it is
a predicate that takes the subject and the object (‘John’ and ‘the toast’)

I'Note that the adverbial modifiers we are concerned with in this paper are only those
that Bennett [3] calls ‘standard’ ones, excluding the negative or frequency adverbs such
as ‘never’ or ‘seldom’ and the non-commital adverbs such as ‘allegedly’.

and the adverbial modifiers (‘with the knife’ and ‘in the kitchen’) as its
arguments, having the following two as semantics of (1) and (2), respectively:

(3) butter(j,toast)
(4) butter(with_knife,in_kitchen, j, toast)

where j and toast of type e are the semantics of ‘John’ and ‘the toast’,
and with_knife and in_kitchen of type ADV are the semantics of adverbial
phrases ‘with the knife’ and ‘in the kitchen’, respectively. (Here, it is not
important what ADV is, but see below.) However, there is a problem:
what is the type of butter in (3) and (4)? For those terms to be well-typed,
butter in (3) and (4) would need to have the following two different types,
respectively:

(5) e—e—t
(6) ADV — ADV —e—e—t

But this means that the word ‘butter’ does not seem to be able to have a
single interpretation (rather unintuitively!) — its interpretations in (1) and
(2) are different terms with different types (5) and (6). In other words, the
common semantic term butter does not exist. This is the variable polyadic-
ity problem as explained by Davidson (and Kenny). Note that, in the above
example, we have only considered adding two more adverbial modifiers to
obtain (2) from (1). The intuitive understanding that one may have arbi-
trarily many such adverbial modifiers seems to make the situation worse.

Let us be clear: the above problem of variable polyadicity arises be-
cause, in usual logical systems like first-order logic or simple type theory
(higher-order logic), when a predicate symbol is introduced, the number of
arguments the predicate should take to form a logical proposition is fixed.
There is no such a predicate that could take arbitrarily many arguments to
form propositions. So, in the above example, the predicate butter in (3) and
(4) does not exist in ordinary logical systems and, therefore, the semantic
interpretations (3) and (4) are problematic.

It is worth pointing out that, besides the variable polyadicity problem,
there are obvious logical relationships between such action sentences as ex-
emplified above, which, however, may not be easy to obtain in traditional
logical semantics. For example, intuitively, the semantics of (2) should log-
ically imply that of (1). Even if the semantics (3) and (4) were allowed,
would we have that (4) implies (3)? If not, what should one do? In such
cases, one would usually have to resort to ad hoc meaning postulates to

enforce such relations and this is usually cumbersome and would better be
avoided. 2

1.2 Davidsonian event semantics

Davidson [14] introduced the notion of event, pioneering event semantics,
whose modeling method can be summarized as follows:

1. Davidson believes that action verbs semantically introduce (hidden)
event variables quantified by existential quantifiers.

2. The semantics of verbs and adverbs (or adverbial phrases) can be
described as predicates whose domain consists of all events.

3. Researchers in the neo-Davidsonian period introduced semantic de-
scriptions with thematic roles®, thereby further simplifying the mod-
eling method.

The neo-Davidsonian event semantics of (1) and (2) can be expressed as
(9) and (10), respectively, where the functions ag and pt from events to
entities describe the thematic roles called agent and patient, respectively,

2In Montague semantics, besides the approach taken in (3) and (4), there are other
ways to interpret the sentences like (1) and (2), but they would also require meaning
postulates to obtain expected logical relationships. For instance, in simple type theory
(higher-order logic), one may consider the following semantic types for the relevant words
and phrases:

butter : e—e—t
with_knife : (e—t)—e—t
in_kitchen : (e—t)—>e—t

Then, (1) and (2) can be interpreted as (7) and (8), respectively:

(7) butter(j, toast)
(8) in_kitchen(with_knife(butter(j)))(toast)

However, in order to have that (8) implies (7), we would have to impose meaning postulates
to enforce it: for instance, the meaning postulates could be that both with_knife(p,x) D
p(z) and in_kitchen(p, z) D p(z) are true.

BTW, one may also consider the approach to veridicality in modern type theories [8],
although its foundational type theories go beyond Montague’s approach.

3Thematic role is a linguistic term, also known as thematic relation, which refers to
the role played by a noun phrase in an event described by a governing verb. For example,
in the sentence ‘John ate an apple’, ‘John’ is the doer of the eating event and plays the
thematic role called ‘agent’, while ‘an apple’ is the object of the event and plays the
thematic role called ‘patient’.

while butter, with_knife, and in_kitchen are all expressed as predicates
with events as their domain that variable v ranges over:

(9) Jv. butter(v) A ag(v) =37 A pt(
(10) Fwv. butter(v) A ag(v) =j A pt(v) = toast
A with_knife(v) A in_kitchen(v)

v) = toast

The event semantics (9) and (10) have obvious advantages over (7) and
(8) and are more satisfactory. In particular, the adverbial modifiers are no
longer arguments of a verb® (actually, in the neo-Davidsonian move, the
subject or the object is not, either): the semantics of a verb, say butter,
now always takes an event as its argument and, as a consequence, the vari-
able polyadicity problem disappears. Furthermore, concerning logical rela-
tionships, we now obviously have (10) implying (9) (the former has more
conjuncts), and do not have to assume extra meaning postulates.

1.3 A type-theoretical solution and summary of the paper

The above variable polyadicity problem has become the key justification for
event semantics (there are also other benefits — see below and §3). People
just do not see how to resolve it in traditional logical systems, mainly because
it would require extending the base logic on which the whole foundational
theory (set theory) is based, so that a predicate could take indefinitely many
arguments. This is something unnatural to do, to say the least.

4People usually regard events as special entities of type e and think that events do not
form a distinguished type (see [45] for a discussion of the ‘event modification problem’).
The author believes that it is better to introduce a type Event of all events and the event
quantifications would become ‘Jv : Event’. As for whether an event is an entity (that is,
whether Fvent is a subtype of e), it can be left open if it is not important. In this paper,
this matter is not important.

®Tt is worth noting that adverbial modifiers of a verb are taken to be arguments only in
the approach illustrated by Davidson [14] (and Kenny [27]), which of course has motivated
event semantics. In most of the studies afterwards, people have ‘modifiers as modifiers’,
as a reviewer correctly points out.

SThere are several papers concerned with proposing new logical systems in order to deal
with the variable polyadicity problem. These include the work by Graves [21] and that
by Grandy [20], among others. However, because the theoretical foundation is set theory,
which is based on logic, a change of the basic logical system has not been popular and,
partly because of this, these systems have not become influential. (See §4.1 for further
comments.) There are also other problems: some of such systems (for example, [21])
are proposed mainly to fix the variable polyadicity problem, even involving the linguistic
notion of thematic roles in its formulation. People who are not doing logical semantics
would certainly question the suitability of such a system as a foundational logic.

However, things are different from a type-theoretical point of view. Un-
like set theory, type theory is not a theory in traditional logical systems
such as first-order logic. Instead, logic is only a part of type theory and, in
a modern type theory, there are many non-logical constructs which can pro-
vide flexible manipulation mechanisms of logical expressions. (See §4.1 for
more technical explanations in this respect.) In this paper, we will demon-
strate that, extending Church’s simple type theory C [11], as employed by
Montague in formal semantics [35], by two type constructors (dependent
function types and a type of natural numbers), will result in a language,
called CT, where a predicate (and a function in general) may be parame-
terised by numbers to indicate how many arguments it may take to form
logical propositions. This naturally solves the variable polyadicity problem:
we can have a function butter that, when applied to a number, results in a
predicate butter(n) that takes n further arguments to form a proposition.”

It is worth pointing out that the system CT is actually a (small) sub-
system of UTT [29], an (impredicative) modern type theory employed in
doing formal semantics in modern type theories (MTT-semantics) [8, 31].
Compared with Davidsonian event semantics, our proposed solution offers
significant advantages in both formal and ontological economy. By employ-
ing a minimal type-theoretical extension of the underlying logical system
without introducing events as additional ontological commitments, we aim
to achieve explanatory adequacy while maintaining greater simplicity and
conceptual clarity. (See §4 for more discussions.)

The introduction of events to formal semantics has brought in both ben-
efits and potential issues or even problems. Besides solving the variable
polyadicity problem, event semantics has many other benefits in semantic
constructions, from small issues such as commutativity of semantic inter-
pretations of adverbial modifiers, to larger ones such as linking tense and
aspect to events in semantics. As discussed in the paper, it seems that most
(if not all) of these benefits, except the solution to the variable polyadicity
problem, can be obtained by alternative means without introducing events
as ontological entities in the semantic framework (see §3). Together with
our proposed solution to the variable polyadicity problem in C*, this seems
to suggest that the introduction of event in event semantics may not be
necessary as many people would have believed in. We contend that it is
important for people to realise this, at least in principle.

The introduction of the notion of event is not without controversy. Ex-

"Our formal definition in §2 is slightlly different: there, butter(n) takes m + 2 more
arguments to form a proposition, with n only indicating the number of adverbial modifiers.

amples of such include, to mention a few: (1) People understand that the
employment of events introduces extra ontological commitments that may
not be justified easily. (2) It seems very difficult, if possible, to determine
the individuation criteria for events (put in another way, it is unclear what
reasonable criteria of identity for events are). (3) The event quantifiers in
event semantics may have unexpected interferance with other quantifiers in
semantic interpretations, leading to questionable or even incorrect seman-
tics. Such considerations have further mystified the notion of event. We
contend that the semantics community would be better off if we realise that
events are not in principle necessary for formal semantics. Of course, it may
be beneficial in practice in semantic construction.

In the following §2, we describe and study the proposed type-theoretical
solution, first illustrating the role that dependent typing plays in the pro-
posal (§2.1) and then describe the formal extension of simple type theory
and how the new constructs facilitate the implementation of the proposal
(§2.2). Then, in §3, we shall consider the benefits of event semantics in the
second category, i.e., those because of the presence of events as entities for
verb actions. We shall focus on event talks and perception words in §3.1
and §3.2, respectively. §4 discusses two issues: why the proposal to solve
the variable polyadicity problem is natural and why we think that the ex-
tension is non-ontological. The final section discusses briefly some related
and future work.

2 A Type-Theoretic Solution to Variable Polyadic-
ity

In this section, a type-theoretical solution to the variable polyadicity prob-

lem is described. We shall first explain what a dependent type is and illus-

trate informally how the construction works, before getting into the more

formal definitions. After describing the proposed solution, we shall discuss
several relevant aspects and make some remarks.

2.1 Dependent typing

In this paper, we shall extend the simple type theory with dependent func-
tion types (II-types) and a type N of natural numbers (see §2.2.1 below for
a more detailed description).

To give semantic interpretations to action verbs as exemplified in the
variable polyadicity problem, we shall employ dependent types TV-ADV(n)

and IV-ADV(n) to help us describe the types of adverbial modification
phrases for transitive verbs like ‘butter’ and intransitive verbs like ‘talk’,
respectively. For specific numbers, we have:

TV-ADV(0) = e—e—t
TV-ADV(1) = ADV —se—e—t
TV-ADV(2) = ADV - ADV —se—e—t

IV-ADV(0) = e—t
IV-ADV(1) = ADV s e—t
IV-ADV(2) = ADV = ADV e —t

where ADV = (e — t) — (e — t) is the type of adverbial modification
phrases. For instance, for transtive verbs like butter, their semantic types
are the following II-type:

IIn : N. TV-ADV(n)

Any object f of this type will first take a number argument n, then f(n) is
of type ADV — ... - ADV — e — e — t, where ADV occurs n times. If f
is butter, we then have:

butter(0) : TV-ADV(0) = e e —t

butter(1) : TV-ADV(1) ADV e —e—t
butter(2) : TV-ADV(2) = ADV - ADV —se—e—t

This is exactly what we have hoped for. More formal definitions will be
given below.

2.2 Proposed solution to the variable polyadicity problem

In this section, we describe the formal mechanisms that extend Church’s sim-
ple type theory in order to define type-valued functions such as TV-ADV.
We shall first describe the system CT, an extension of Church’s simple type
theory C [11], as employed in Montague’s semantics [35], with dependent

function types and a type of natural numbers, and then the proposed solu-
tion to the variable polyadicity problem.?

2.2.1 The underlying type theory C*

Let C be Church’s simple type theory [11] as employed by Montague for
formal semantics [35].7 The type system CT extends C with the type N
of natural numbers and dependent function types (II-types). The inference
rules for CT consist of those for C and those for type constructors II and N,
all listed in Appendix A. We now give brief explanations of II-types and N.

Dependent function types (II-types). The dependent function type
(II-type) is a typical form of dependent type. If A is a type, and B[x] is also
a type, where B[z]| can depend on an object z of type A, then Ilz:A.Blx] is
a type. An object of Ilz:A.Bx] is a function f that satisfies the following
condition: for any a : A, the type of f(a) is Bla]. Note that the type B[a]
of f(a), the result of applying f to a, depends on the input a — that is why
the II-type is a dependent type.

Here is a very simple example: assume that Human is the type of human
beings and, for any = : Human, Parent(z) is the type of parents of z, then
the II-type Ilz:Human.Parent(x) contains the functions f as its objects:
for any h : Human, the type of f(h) is Parent(h); that is, f(h) is either
the father or the mother of h.

The formal inference rules for the II-types can be found in Appendix A.2.
Note that a (non-dependent) function type is just a special form of a II-type:
A — B is just a notation for Ilx:A.B when x does not occur free in B.

The type N of natural numbers. Besides the usual introduction, elim-
ination and definition rules (see Appendix A.3), N also has a large elimina-
tion rule:

'tkn:N THECtype T, x:N,Y typet f(z,Y) type
Fl_gN(C’f7n) typ@

8Note that we shall describe our proposal based on Church’s simple type theory as
employed in Mantague’s semantics, partly because we want to resort to the familiarity of
many researchers of the simple type theory for easier understanding. Please note that the
proposal can also be carried out in a modern type theory — see §4.1.

9In most of the formal semantics literature, Church’s simple type theory is described
model-theoretically. It can also be described proof-theoretically — see, for example, Ap-
pendix 1 of [8] or Appendix D of [31] for the proof-theoretic description of C in the context
of studying formal semantics. (Also see the Appendix A.1 of this paper.)

The above rule states that the elimination operator £y is also large so that it
allows one to define type-valued functions with N as their domain — see the
equality laws in Appendix A.3, according to which one can use induction on
natural numbers to define functions (and, in particular, type-valued func-
tions by means of large elimination). These include functions like TV-ADV
that is used to form dependent types TV-ADV(n), as informally described
above and to be formally defined below.

Large elimination has been studied by many authors (see, for example,
Dybjer [18] for a discussion in the context of induction-recursion). An alter-
native to large elimination is to introduce a type universe that contains (the
names of) N and II-types as its objects. The presence of such a universe
also allows one to define type-valued functions such as TV-ADV. That is
why, in full modern type theoies such as Martin-Lof’s type theory [36] and
UTT [29] (see §4.1), we do not need large elimination anymore since they
already contain universes. In a way, to allow large elimination for N, we
have opted for ‘simplicity’ without introducing another notion (i.e., type
universe). However, it should be noted that, to do it this way, we have not
gone beyond ordinary dependent type theory.

2.2.2 Description of the proposal

Let ADV = (e — t) — (e — t) (as above). The (semantics of) transitive
verbs such as butter have type

(11) butter : lIn : N. TV-ADV(n)
where TV-ADV is a type-valued function, defined by induction on N as:

(12) TV-ADV(0) =e s e — t
(13) TV-ADV(n + 1) = ADV — TV-ADV(n)

Similarly, the intransitive verbs such as talk have type
(14) talk :IIn: N. IV-ADV(n)

where IV-ADV is defined as:

(15) IV-ADV(0) =e — t
(16) IV-ADV(n + 1) = ADV — IV-ADV (n)

Then, intransitive/transitive verb phrases such as talk /butter can be defined
as the following Example 2.1 shows.

10

Example 2.1 (butter) Let BUTTER : e — e — t be the semantic interpre-
tation of ‘butter’ in a sentence with no adverbial modification phrases such
as (1). Then, the semantics of transitive verb ‘butter’, of type (11), can be
defined as follows, where in (18), n € w and advy stands for the sequence
advy, ...,advy for k >0 (when k = 0, advy, is the empty sequence):

(17) butter(0) = BUTTER (or, butter(0,z,y) = BUTTER(x,y))
(18) butter(n+1,advy,1,x,y) = butter(n, advy, x,y) & adv,1(BUTTER(Z),y)

The sentence (2), repeated here as (19), has semantics (20), where j, toast :
e and with_knife, in_kitchen : ADV (as explained in §1.1):

(19) John buttered the toast with the knife in the kitchen.
(20) butter(2, with_knife,in_kitchen, j, toast)

Actually, (20) is equal to the following formula:
(21) BUTTER(j,toast) & with_knife(BUTTER(j), toast) & in_kitchen(BUTTER(j), toast)

which is the basic semantics BUTTER(j], toast) in conjunction with two for-
mulas that interpret the adverbial modification phrases. It is not difficult to
see the equality between (20) and (21): it can easily be verified by means of
the above definition of butter in (17) and (18), according to which we have:

(22) butter(2, with_knife,in_kitchen, j, toast)
= butter(1,with_knife, j, toast) & in_kitchen(BUTTER(j), toast)
= butter(0, j, toast) & with_knife(BUTTER(j), toast) & in_kitchen(BUTTER(j), toast)
= BUTTER(j, toast) & with_knife(BUTTER(j), toast) & in_kitchen(BUTTER(j), toast)

d

What we have shown, as illustrated by the above example for butter,
is that the extra types in C* (II-types and N) can provide useful means
to manipulate logical expressions in semantic construction. In particular,
we can represent semantic interpretations so that they can take one of the
following two forms:

e VP-form:' A semantic interpretation of an action verb can take a
‘VP-form’ where its semantics takes as arguments the adverbial mod-
ifiers as well as the subject/object. For instance, the semantics of
‘butter’ takes a VP-form in (20) to interpret (19).

0Here, ‘VP’ stands for variable polyadicity, not ‘verb phrase’.

11

e Conjunctive form: The VP-form of a semantic interpretation is the
same as (or equal to) a ‘conjunctive form’ where the base meaning of
the action verb, applied to its subject/object, is in conjunction with
the semantics of each of the adverbial modifiers. For instance, (21) is
the conjunctive form of the semantics of (19), where the base meaning
of ‘butter’ is BUTTER and each adverbial modifier is interpreted as
adv(BUTTER(j), toast) with adv being the semantics of the modifier.

For sentences with adverbial modifications, the VP-forms allow us to repre-
sent their semantic interpretations as formulas in terms of variable polyadic-
ity of action verbs (cf., Davidson’s variable polyadicity problem — see §1.1),
while the conjunctive form, equal to the VP-form, brings about many ad-
vantages obtainable from an event-based semantics.

An action verb has a single semantics, although it is parameterised by
different numbers n when used in semantic constructions for sentences with
n adverbial modifiers. For example, butter is the semantics for ‘butter’
and butter(n) is the predicate to be used for sentences with n adverbial
modifiers. For different numbers n, butter(n)’s are different predicates — they
take different numbers of arguments (in particular, n adverbial modifiers) to
form logical propositions. The relationship between butter(n) for different
n is as expected. For example, for butter we have:'!

(23) butter(n + 1, advyy1,z,y) D butter(n, adv,, z,y)

where adv;’s are semantics of the adverbial modifiers. Because of the above,
we can deduce, for example,

(24) butter (2, with_knife,in_kitchen, j, toast)
D butter(1, with_knife, j, toast)
D butter(0, j, toast)

Note that because butter(0, j,toast) = BUTTER(j,toast) by definition, we
have that (the VP-form of) the semantics of (2) implies that of (1), as
expected.

In general, we have:

e for the semantics TV of any transitive verb phrase such as ‘butter’,

TV (n+1,adv,s1,2,y) D TV (n,adv,, z,y)

e for the semantics IV of any intransitive verb phrase such as ‘talk’,

IV(n+1,adv,11,2) D IV (n,advy,)

" Note that we only consider ‘standard’ adverbial modifiers here (c.f., Fn 1).

12

Note that, just like event semantics, we have obtained the expected inference
relationships between such sentences concerning their adverbial modifiers
without resorting to meaning postulates (or events).

Commutativity of adverbial modifiers is an (arguably small) advantage
of event semantics (see, for example, Landman’s lecture notes [28]), although
one might have to impose meaning postulates to achieve this in the Mon-
tague semantics (c.f., Footnote 2). For instance, the semantics of the follow-
ing two sentences should be logically equivalent (their adverbial modifiers
are swapped):

(25) John buttered the toast with the knife in the kitchen.
(26) John buttered the toast in the kitchen with the knife.

This commutativity is true for our proposed semantic representation be-
cause it has the conjunctive form (and because the conjunction operator &
is commutative). To explain this in more details, the VP-forms of the se-
mantics of (25) and (26) are (27) and (28), respectively, with the arguments
with_knife and in_kitchen swapped:

(27) butter(2, with_knife,in_kitchen, j,toast)
(28) butter(2,in_kitchen,with_knife, j, toast)

It is not difficult to see that their corresponding conjunctive forms are only
different because two of the conjuncts are swapped, and therefore, those two
conjunctive forms are logically equivalent. As a consequence, the VP-forms
(27) and (28) are logically equivalent, too.

Remark The above proposal has been implemented in the Coq proof devel-
opment system [13] for the ‘butter’ example, including the above inference
relationship (23) as a theorem — see Appendix B.1. 0

2.3 Remarks

Our above proposal is based on the extension C* of simple type theory. Two
remarks about the above approach are in order and they will be further
elaborated in §4.

1. First of all, the approach is natural from a type-theoretical point of
view (c.f., §4.1). In fact, CT is (essentially) a subsystem of UTT [29],
one of the modern type theories [34, 13, 24] implemented in proof
assistants with applications such as formalisations of mathematics and

13

program verification (and also linguistic semantics [8, 31]). One may
take this as saying that the proposal is not based on a change of
the underlying logic made specifically to solve the variable polyadicity
problem (c.f., Footnote 6); instead, it is based on a formal system
studied for a much more general purpose.

2. Compared with events in event semantics, the extensions to obtain C*
from C is non-ontological and may be called, in Quine’s terminology
[40], ideological (c.f., §4.2). In other words, we have employed ad-
ditional mechanisms for manipulating logical expressions. They may
also be called syntactical mechanisms and have nothing to do with
ontological existence.

3 Other Benefits of Event Semantics

Davidson’s original motivation to introduce the notion of event (and event
quantification) into formal semantics was to solve the problem of adverbial
modification (as we have studied in the above section). During its studies
for more than half a century, people have recognised that event semantics
has many other benefits as well, including those exemplified by Parsons [37].
We classify the benefits of event semantics into the following two categories:

1. Category 1 singles out the variable polyadicity problem, as studied
above — event semantics provides a good solution.

2. Category 2 consists of several benefits of event semantics, all resulting
from the introduction of the notion of events, individual-like entities
that correspond to actions associated with verbs.

The introduction of events plays such a role that, for every action associated
with a verb, one introduces an entity that corresponds to the action, and
this entity is called an event, introduced as an (existentially quantified) event
variable. According to our analysis, most (if not all) of the benefits in the
second category come from the availability of such newly introduced entities
that correspond to actions.

We contend that the variable polyadicity problem may be the only one
that requires a substantial change like introducing the notion of event in
event semantics (but see the above for our proposed solution without events).
In this section, we shall attempt to show that, for those benefits of event
semantics in the second category, we can already find alternative ways in

14

the semantic framework to deal with them without introducing event vari-
ables as ontological commitments. Of course, one may not exhaust all the
possibilities and what we shall do is to analyse what Parsons [37] consid-
ered as evidence for event semantics, in addition to the variable polyadicity
problem, in two aspects: (1) times in semantics (in §3.1) and (2) special
semantics involving perceptual verbs (in §3.2). We shall use these cases to
illustrate how semantic constructions for these phenomena can already be
done without events.

The notion of event is also naturally related to a proper semantic un-
derstanding of nominalisation. In §3.3, we shall discuss some pieces of work
that try to study nominalisation without introducing events.

3.1 Event talks and time

The notion of event is closely related to time, as an event is naturally as-
sociated with the time at which it occurs. However, there seems to be
an important difference: tense and aspect exist in language and, therefore,
times already occur in expressions in most (if not all) sentences, while events
do not — events only occur in some sentences that refer to them directly. Put
in another way, time appears at the surface level in most sentences, whilst
events do not. That explains why it is natural for people to consider seman-
tic frameworks with time as one of their key elements, whilst having events
as an ontological commitment may be more questionable.

Parsons [37] gave some examples of ‘event talks’ as evidence for event
semantics — the following are such examples given by Parsons, where (29)
involves explicit event reference, while (30)’s reference to events is implicit.

(29) After the singing of the Marseillaise, John saluted the flag.
(30) After the Marseillaise was sung, John saluted the flag.

Using event semantics, one can model these sentences as (31), where a fter(e’, e)
is the formula expressing that event ¢’ happens after event e.

(31) Ze. saluting(e) & ag(e) = j & pt(e) = flag &
3e’. singing(e') & pt(e') = M & after(€,e)

If we use ¢, to express the time at which event e takes place, then after (e, e)
can be equivalently expressed as t, < t..

Many of such cases as the above are concerned with times at which
events take place, and their semantics can be given in a semantic framework
that already has times expressible for dealing with tensed sentences, without

15

resorting to events. For example, in such a framework, the semantics of (29)
or (30) can be given as (32):

(32) 3t,t'. sing(j, M, t) & salute(j, flag,t') & t <t

where a semantic predicate for an action verb takes one more argument,
expressing the time that the action takes place. For example, sing(j, M)
becomes sing(j, M, t), and similarly for salute.?

Another example Parsons considers involves event quantification: for the
sentence (33), he gives event semantics (34), where the formula IN (e, €) is
undefined:

(33) In every burning, oxygen is consumed.
(34) Ve. burning(e) D 3e’. consuming(e’) & pt(e') = Og & IN(e,¢€’)

Such sentences can also be given semantics in a timed framework, with-
out using events. For instance, the above sentence (33) may be given the
following semantics (35).

(35) VaVvt. burn(z,t) D consume(Oa,t)

To rephrase (35), in every burning z that takes place at t, oxygen is con-
sumed at t as well. We contend that this also represents the semantics
correctly, without using events.

3.2 Perception words

Another case that Parsons [37] puts forward is how to give suitable semantics
to a sentence that features a perceptual verb followed by a clause lacking
explicit tense, as exemplified by the following sentence.

(36) Mary saw John leave.

Let’s assume that the semantic type of ‘see’ be e — e — t. The question
is what the semantic type of ‘leave’ should be. A usual semantics for verbs
would not work for, if leave were of type e — t, then (37) would not be
well-typed and, hence, cannot be considered as the semantics of (36):

(37) (#) see(m,leave(j))

12G8tudies of such ‘positional’ notations for temporal expressions may be traced back to
the work by Lo$ in the 1940s (his thesis in 1947 — see, for example, [44]) and one may also
consult other systems based on such positional calculi (see, for example, [17]), which are
different from Prior-style temporal logics with temporal operators [39]. Also, here, the
time t could either be an instance or an interval, and we omit formal details.

16

One may ask: what if we take see’s type to be e — t — t7 Yes, in that
case, (37) would be well-typed. However, there is a problem: in that case,
(37) would not be suitable as the semantics of (36) because it is closer to
the meaning of the following sentence with a that-clause:

(38) Mary saw that John left.

The above (38) has a different meaning from (36): with the that-clause, it
means that Mary became aware that the leaving event took place (usually
without seeing it directly).

In event semantics, the above problem can be resolved because individual-
like entities (events of type e) are introduced for actions associated with
verbs and the verbs are all interpreted as predicates over events, of type
e — t. For example, the event semantics of (36) can be (39):

(39) Je. see(e) & ag(e) =m &
3e’. leave(e') & ag(e') = j & pt(e) = ¢

The key is that the entity €’ is now available to be the patient of e; that is,
¢’ is the event seen in the event e. The event-based analysis models this by
treating the embedded clause as an event perceived by the subject.

We contend that interpretating such sentences involving perceptual verbs
does not necessarily require us to use event semantics, where events are in-
troduced in general as ontological commitments for all sentences. Instead,
we’d only need to do something in such special cases as interpreting percep-
tual verbs with tenseless clauses. Note that the introduction of events has
essentially turned an action (John’s leaving in (36)) into an entity (the event
¢’ in (39)), so that one can use €’ in semantic construction. A similar thing
can be done without introducing events in general — here is our proposal,
which we explain for sentence (36).

We assume that, as usual, the verbs ‘see’ and ‘leave’ have semantic types
(40) and (41), respectively, where we choose to use LEAVE instead of leave
because we will use the latter below for the general semantics of ‘leave’ for
which LEAVE becomes a special case:

(40) see:e —e—t
(41) LEAVE:e — t

In order to interpret (36), we consider a special mapping E, of type t —
e, which turns a logical formula into an entity: for example, E(LEAVE(j)) :

17

e.!3 Then, the sentence (36) can be interpreted as (42):
(42) see(m, E(LEAVE(j)))

We emphasise that introducing the mapping E is only for the interpretation
of such sentences involving perceptual verbs, not in general. Put in another
way, event-like entities are not introduced in general as ontological commit-
ments, but only when they are absolutely needed in special cases (and, in
this case, for perceptual verbs).

There is a further issue one may raise: what if one adds adverbial mod-
ifiers to the senseless verb ‘leave’ in (36), as exemplified by the following
sentences (43) and (44), where one and two adverbial modifiers are added,
respectively:

(43) Mary saw John leave quickly.
(44) Mary saw John leave quickly and quietly.

To interpret such sentences as (36), (43) and (44) in general, we need to
consider the general interpretation of verb phrases when a verb (e.g., ‘leave’)
takes arbitrarily many adverbial modifiers (c.f., the definition of butter in
§2.2.2). For ‘leave’, its semantics is of the following type (for intransitive
verbs, as (14) in §2.2.2):

(45) leave : IIn : N. IV-ADV(n)

where IV-ADV’s definition is given in (15) and (16) in §2.2.2. We can now
define the semantics of the ‘leave-phrases’ as follows:

(46) leave(0,x) = LEAVE(x)

(47) leave(n + 1,adv,41,x) = leave(n, adv,, z) & adv,+1(LEAVE,)

The semantics of (36), (43) and (44) can now be given as (48), (49) and
(50), respectively.

(48) see(m, E(leave(0,7)))

(49) see(m, E(leave(1, quickly, j)))

13Here, E alludes to ‘entity’ or ‘event’. Instead of assuming the existence of E directly,
one might also consider a more elaborate treatment, introducing E as follows by going
through unit types as a function ‘composition’: E(p) = Fo(p,*(p)), where Eo : Ilp :
t. 1(t,p) — e, and * : IIp : t. 1(t, p) is the constructor of the unit types. The parameterised
unit types 1(A, a) are singleton types with only one object a of type A, whose explanations
are omitted (see, for example, [30] among others).

18

(50) see(m, E(leave(2, quickly, quietly, j)))

In order to obtain the desired inference relationships between sentences
with such a structure, we need to impose the following meaning postulate:
for see and leave, we assume (51), where z : e, n: N and adv; : (e — t) —
(e = t).

(51) see(z, E(leave(n + 1,adv,41,))) D see(x, E(leave(n, adv,, x)))

Of course, because of (51) and the transitivity of logical implication, we can
prove the following (52):

(52) see(z, E(leave(n, adv,,))) D see(z, E(leave(m, advy,, r)))
for any natural numbers m < n.

With this, it is easy to see that (50) D (49) D (48), that is, informally we
have: (44) implies (43) implies (36), as expected.

Remark The above has been implemented in the Coq system, including
(52) as a theorem — see Appendix B.2. O

Note that the meaning postulate (51) does not cover everything we ex-
pect to hold. For example, consider the following sentence (53), where ‘and’
connects two clauses ‘John leave’ and ‘Kevin run’. Then, intuitively, it would
be the case that (53) implies (36) which, strictly speaking, is not covered
by (51). However, in this case, one may argue that (54) rephrases (53) and
therefore, because (54) implies (36), we are OK.

(53) Mary saw John leave and Kevin run.

(54) Mary saw John leave and Mary saw Kevin run.

3.3 Nominalisation: a discussion

The introduction of an entity to stand for an action has naturally provided an
elegant solution to semantic understanding of nominalisation. For example,
consider the sentence (55), where both ‘talked’ and its nominalisation ‘the
talk’ occur. In its event semantics (56), the event variable e is the entity
that corresponds to the talking action performed by John.

(55) John talked and the talk was interesting.
(56) Fe. talking(e) & ag(e) = j & interesting(e)

19

Because of the existence of the entity e, one can then form interesting(e) to
say that the talking action is interesting as if it is the event e. In this way,
event semantics establishes the connection between action verbs and their
nominalisations naturally, which one might even consider as a side-effect
when trying to resolve the VP problem.

It is arguable whether event semantics is essential in resolving the nom-
inalisation problem. In the literature, there exist different approaches to
deal with nominalisation including, for example, Chierchia’s work [9, 10].
In these approaches, event semantics is not used. However, one may also
argue that somehow event-like structures are employed in these approaches
including, for instance, discourse referents in Discourse Representation The-
ory [25, 26, 23]. In this paper, we shall not discuss these approaches in
detail.

4 Discussions

This section discusses some useful background information and philosophical
arguments behind the proposed technical solution to the problem of variable
polyadicity (see, in particular, §2). We hope that this could lead to a better
understanding of the central theme of the paper.

4.1 Type theory and logic

We argue that our proposed solution to the variable polyadicity problem is
natural from a type-theoretical point of view, especially when it is compared
with that in the traditional set-theoretical framework.

Modern studies of type theory started from Martin-Lof’s work in early
70s on foundations of constructive mathematics (see Martin-Lof [33] and
subsequent developments [34, 36]). Type theory and the associated proof
assistants have interesting applications in formalisation of mathematics (see,
for example, [4]), program verification (see, for example, [38] for a recent
development), and foundations of mathematics, including the recent study
of univalent foundations [24, 5]. Type theory, and the idea of dependent
typing in particular, have been applied to linguistic semantics as well (see
[1, 2, 8, 12, 22, 31, 41, 42, 43, 46|, among others).

An important, but often neglected, feature of type theory is its rela-
tionship with logic. This may be shown by explaining its difference from
set theory. Set theory (or a set theory) is a theory in a logical system
(e.g., first-order logic FOL), as depicted by the picture on the left in Fig-
ure 1. A type theory, however, is not a theory in logic. Instead, a type

20

Logic (e.g., FOL) Type Theory

set theory logic(s)

O

Set theory is a theory in logic Logic is a part of type theory

Figure 1: Relationships between logic and set theory/type theory

theory is at the same level as a logical system (e.g., FOL): it is specified
by means of inference rules. Importantly, logic is a part of type theory, as
depicted by the picture on the right in Figure 1. For instance, one has the
propositions-as-types logic in Martin-Lof’s type theory [34], a higher-order
logic in impredicative type theories such as UTT [29] and the h-logic (with
propositional truncation) in homotopy type theory [24].

In particular, in type theory, there exist other non-logial mechanisms,
some of which can be used to manipulate logical expressions in type theory.
That is why it is natural to think that there can be mechanisms in a formal
system that may be used to manipulate logical expressions. The extensions
of II-types and N in CT, as described in §2.2.1, are such mechanisms. In
fact, CT is a subsystem of the impredicative type theory UTT [29] (or, with
a small qualification, the Coq’s type theory pCIC [13]).!* Therefore, we
believe that our solution to the variable polyadicity problem as proposed
based on the extension CT is natural from a type-theoretical point of view.

4.2 Events: ontological commitments and discussions

Event semantics has been very popular and widely accepted as a powerful
mechanism for formal semantics. However, the notion of event is rather mys-
terious and has not been clearly understood. One would ask, for example:
What is an event? Can events be counted and, if so, how? Unfortunately,
such basic questions have not received satisfactory answers. An important
issue concerning this is that it is unclear what the notion of identity be-
tween events should be, and many people believe that the notion of identity

MFormally, a detail need be clarified: there are universes in a type theory and, if one
has universes, large elimination (as found for N in this paper) becomes unnecessary.

21

criterion is extremely important, saying, for instance, there are no entities
without identity (see, for example, Geach [19]). Without a good understand-
ing of the identity criteria, the notion of event would remain mysterious and
a better understanding is called for.

The issue we would like to discuss here, albeit briefly, is about the onto-
logical commitments on events in Davidsonian event semantics.'® Davidson
argued, with the (negative) evidence concerning the variable polyadicity
problem, that action verbs carry implicit uses of existentially quantified
event variables. However, this may not be the case if events do not neces-
sarily exist, and it may be reasonable to think of events not as ontological
entities, but rather just as an intermediate mechanism helpful in semantic
constructions.

Quine [40] pointed out that, in theoretical development, there are differ-
ent kinds of commitments: ontological commitments and idealogical com-
mitments. For example, Davidson regards events as ontological commit-
ments in event semantics, while our extension of simple type theory to form
C™ should be considered idealogical in the sense that they only provide syn-
tactical tools for semantic construction. As another example, if we introduce
time in a semantic theory, it is usually regarded as an ontological commit-
ment. Of course, as we commented on in §3.1, time appears at the surface
level in most sentences, whilst events do not. Therefore, it is natural for
time to be considered as one key component in a semantic framework, while
having events as an ontological commitment would be more questionable.

Without considering events as ontological commitments, one may think
of the framework of event semantics as, at least theoretically, an interme-
diate one to provide a useful toolkit in semantic construction. It would be
imaginable that one could produce a tool that automatedly transforms a
semantics in event semantics into an ‘equivalent’ one without events. Of
course, even so, this may only be a theoretical possibility, and further work
is needed to explore this in such a direction.

5 Conclusion

In this paper, we have introduced a type-theoretical approach to addressing
the problem of variable polyadicity in formal semantics, a challenge tradi-
tionally managed through Davidsonian event semantics. Extending simple

15Concerning whether events are considered as ontological entities, philosophers have
taken different views, for example, about the nature of the variables under event quantifier
(c.f., Bennett’s work [3]). We do not make such subtle differences in this paper.

22

type theory with simple dependent typing mechanisms, the semantic frame-
work accommodates predicates of varying arities without incurring the ad-
ditional ontological commitments typically associated with event semantics.
Our proposed solution to the variable polyadicity problem also supports ex-
pected logical inference, which are traditionally attributed to event-based
analyses. Also analysed are some of the linguistic phenomena that have
been argued to necessitate event semantics, such as event reference and the
semantics of perception verbs. Our analysis demonstrates that these phe-
nomena can equally be accounted for without explicitly introducing events
as ontological entities.

There are issues about event semantics that are not studied here in-
cluding, for example, the so-called Event Quantification Problem, the inter-
ference problem of the event quantifier with other quantifiers in semantic
constructions, as pointed out and studied by several researchers (Champol-
lion, Wintor, and others [6, 45, 16]). The EQP problem may be resolved by
introducing so-called Dependent Event Types [32], but we do not discuss it
here. Of course, if we do not introduce the event quantifier in the semantic
framework, we would not suffer from the EQP problem.

Resolving the problem of variable polyadicity, we have proposed a method
to allow arbitrarily many adverbial modifiers as arguments of a verb in log-
ical semantics. What about adjectival modifiers — can we do similar things
in a type-theoretic framework? (Thanks to a reviewer for raising this issue.)
It seems to us that intuitively the answer is positive, although we have not
worked out the technical details. We leave it as future work.

Looking ahead, our work suggests several promising directions for future
research, including the exploration of automated methods for translation
between event-based and event-free semantic representations and extending
type-theoretic analyses to consider more linguistic structures. We hope that
this contribution will encourage semanticists to reconsider the ontological
assumptions underpinning formal semantic theories and further investigate
the potential of dependent type theory in linguistic semantics.

References

[1] N. Asher. Lexical Meaning in Context: a Web of Words. Cambridge
University Press, 2012.

[2] D. Bekki and K. Mineshima. Context-Passing and Underspecification in
Dependent Type Semantics. In S. Chatzikyriakidis and Z. Luo, editors,
[7], pp. 11-41. Springer, 2017.

23

3]
[4]

[17]

J. Bennett. Fvents and Their Names. Oxford University Press, 1988.

K. Buzzard. What is the point of computers? A question for pure
mathematicians. Companion paper to a talk in International Congress
of Mathematicians (ICM 2022), 2022.

S. Centrone, D. Kant, and D. Sarikaya, editors. Reflections on the
Foundations of Mathematics: Univalent Foundations, Set Theory and
General Thoughts. Springer, 2019.

L. Champollion. The interaction of compositional semantics and event
semantics. Linguistics and Philosophy, 38:31-66, 2015.

S. Chatzikyriakidis and Z. Luo, editors. Modern Perspectives in Type-
Theoretical Semantics. Springer, Cham, 2017.

S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type
Theories. Wiley/ISTE, 2020.

G. Chierchia. Topics in the Syntax and Semantics of Infinitives and
Gerunds. PhD thesis, University of Massachusetts, 1984.

G. Chierchia. Formal semantics and the grammar of predication. Lin-
guistic Inquiry, (3), 1985.

A. Church. A formulation of the simple theory of types. J. Symbolic
Logic, 5(1), 1940.

R. Cooper. Records and record types in semantic theory. J. of Logic
and Computation, 15(2), 2005.

The Coq Team. The Coq Proof Assistant Reference Manual (Version
8.1), INRIA, 2007.

D. Davidson. The logical form of action sentences. In: S. Rothstein
(ed.). The Logic of Decision and Action. University of Pittsburgh Press,
1967. (Reprinted in [15]).

D. Davidson. The FEssential Davidson. Oxford University Press, 2006.

P. de Groote and Y. Winter. A type-logical account of quantification in
event semantics. Logic and Engineering of Natural Language Semantics
11, 2014.

D. Dowty. Word Meaning and Montague Grammar. Springer, 1979.

24

18]

[19]

[20]
[21]

[22]

31]

P. Dybjer. A general formulation of simultaneous inductive-recursive
definitions in type theory. The Journal of Symbolic Logic, 65(2), 2000.

P. Geach. Reference and Generality: An Examination of Some Medieval
and Modern Theories. Cornell University Press, Ithaca, 1962.

R. Grandy. Anadic logic and English. Synthese, 32(3-4), 1976.

P. Graves. Argument deletion without events. Notre Dame Journal of
Formal Logic, 34(4), 1993.

J. Grudziniska and M. Zawadowski. Generalized quantifiers on depen-
dent types: A system for anaphora. In S. Chatzikyriakidis and Z. Luo,
editors, [7], pages 95-131. Springer, 2017.

I. Heim. The Semantics of Definite and Indefinite Noun Phrases. PhD
thesis, University of Massachusetts, 1982.

HoTT. Homotopy Type Theory: Univalent Foundations of Mathemat-
ics. The Univalent Foundations Program, Institute for Advanced Study,
2013.

H. Kamp. A theory of truth and semantic representation. In J. Groe-
nendijk et al (eds.) Formal Methods in the Study of Language, pages
189-222, 1981.

H. Kamp and U. Reyle. From Discourse to Logic. Kluwer, 1993.
A. Kenny. Action, Emotion and Will. Routledge and Kegan Paul, 1963.

F. Landman. FEwvents and Plurality: The Jerusalem Lectures. Studies
in Linguistics and Philosophy, vol 76. Springer, 2000.

Z. Luo. Computation and Reasoning: A Type Theory for Computer
Science. Oxford University Press, 1994.

Z. Luo. Manifest fields and module mechanisms in intensional type
theory. In S. Berardi, F. Damiani, and U. de’Liguoro, editors, Types
for Proofs and Programs, Proc. of Inter. Conf. of TYPES 08, LNCS
5497., 2009.

Z. Luo. Modern Type Theories: Their Development and Applications.
Tsinghua University Press, 2024. (In Chinese. A book in English based
on this book is to appear soon).

25

32]

[33]

39
0

1

4

[39]
[40]
[41]
[42]

42

[43]
[44]
[45]

[46]

Z. Luo and S. Soloviev. Dependent event types. In J. Kennedy and
R. de Queiroz, editors, Logic, Language, Information, and Computa-
tion. WoLLIC 2017, LNCS, volume 10388. Springer, 2017.

P. Martin-Lo6f. An intuitionistic theory of types: predicative part. In
H.Rose and J.C.Shepherdson, editors, Logic Colloquium’73, 1975.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

R. Montague. Formal Philosophy. Yale University Press, 1974. Col-
lected papers edited by R. Thomason.

B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-
Léf’s Type Theory: An Introduction. Oxford University Press, 1990.

T. Parsons. Events in the Semantics of English. MIT Press, 1990.

B. Pierce et al. Logical Foundations (Software Foundations series, Vol-
ume 1). Electronic textbook, 2018.

A. Prior. Time and Modality. Oxford University Press, 1957.
W. Quine. Ontology and ideology. Philosophical Studies, 2(1), 1951.
A. Ranta. Type-Theoretical Grammar. Oxford University Press, 1994.

C. Retoré. The montagovian generative lexicon ty,: a type theoretical
framework for natural language semantics. Proc of the 19th Interna-
tional Conference on Types for Proofs and Programs (TYPES 2013),
LIPIcs(26), 2014.

G. Sundholm. Constructive generalized quantifiers. Synthese, 79(1):1-
12, 1989.

M. Tkaczyk and T. Jarmuzzek. Jerzy Los positional calculus and the
origin of temporal logic. Logic and Logical Philosophy, 28, 2019.

Y. Winter and J. Zwarts. Event semantics and abstract categorial
grammar. Proc. of Mathematics of Language 12, LNCS 6878, 2011.

M. Zawadowski and J. Grudziniska. Polyadic quantifiers on dependent
types. In Proceedings of the 30th International Workshop on Logic,
Language, Information, and Computation (WoLLIC 2024), Switzer-
land, 2024.

26

A Inference Rules for C*

The inference rules for C* consist of those for Church’s simple type theory
C and those for N and II-types.
A.1 Inference rules for C

The following inference rules for C are based on the description of Church’s
simple type theory in [32], where in the second rule, FV(I') is the set of
variables that occur freely in I".16

Rules about contexts, base types and \-calculus

' Atype z & FV (D) '-P:t
() valid I, 2:A valid I, P true valid
I" valid I’ valid I, x:A, TV valid I', P true, IV valid

I'tetype T'kFttype T, x:A, I"Fxz:A T, Ptrue, I+ P true

'+ Atype T'F B type Iz:AFD: B 'rf:A—-B Tl'ta:A
I'HA— B type 'kAz:Ab: A— B 't f(a): B

Rules about formation and inference of logical formulas

'EP:t THQ:t I, PtrueFQtrue T'HPDQ true ' P true
'EP2>Q:t I'PDQ true I'tQ true

I'FAtype I'No:AFP:t T 2:AF Ptrue T'FVe:A.P(x)true 'Fa: A
I'-Ve:AP:t I't=Va:A.P true '+ P(a) true

Transformation rule for logical formulas, where ~g is the 3-conversion.'”

I'EPtrue THQ:t
P~
I'FQ true (5 Q)

'Tn the simple type theory C, F'V(T) can be defined as follows: (1) FV(()) = 0; (2)
FV(,z:A) = FV(T)U{z}; (3) FV(T, P true) = FV(I'). Note that when we use FV(I),
I is always a valid context (i.e.: " valid). Therefore, F'V(I") defined in this way is indeed
the set of variables that occur freely in T.

'7As in A-calculus, S-conversion holds: the term (Az:A.b[z])(a) and bla] are computa-
tionally equal (the former computes to the latter) and S-conversion is the equivalence
relation induced by this basic computation.

27

A.2 Inference rules for II-types

The following inference rules for Il-types are standard ones in a dependent
type theory (see, for example, Martin-Lof [34]).

I'EAtype T, x:AF B type
' IIx:A.B type

(IT)

I', z:A+b: B
' Ax:Ab: 1Iz:A.B

(abs)
'k f:Mx:AB Tha:A
(app) I+ f(a) : [a/2]B

I', 2 AFb:B T'Fa:A
I'E (Az:A.b)(a) = [a/z]b: [a/x|B

(8)

A.3 Inference rules for N

Usual rules for type of natural numbers (see, for example, Martin-Lof [34])

I' valid I' valid 'En:N
'FNtype THO:N TFsuce(n): N

z:NFC(2) type TEn: N
F'Fec:C0) T'ya:N,y:C(z) F f(z,y) : C(succ(x))
L'Eé&n(e f,n): C(n)

Large elimination rule for N

F'kn:N TFCtype T, z:N,Y typet f(x,Y) type
Pl_gN(C)f7n) type

Definition rules for elimination operator En (simplified as equality laws)

SN(.T,f,O) = X
En(z, f,suce(n)) = f(n,En(z, f,n))

where x can either be an object of some type (in the case of ordinary elimi-
nation) or a type itself (in the case of large elimination).

28

B Coq Implementations

B.1 Proposal for Variable Polyadicity

(* Basic imports *)
Require Import Coq.Init.Datatypes.
Require Import Coq.Arith.Arith.

(x e and t *)
Parameter e : Set. (* Type for individuals/entities *)
Definition t := Prop. (x Type for truth values / propositions *)

(* Adverbial modifier type *)
Definition ADV := (e -> t) -> (e -> t).

(* Basic semantics of butter without adverbial modification *)
Parameter BUTTER : e -=> e -> t.

(* Dependent type of transitive verbs with n adverbial modifiers *)
Fixpoint TV_ADV (n : nat) : Type :=

match n with

| 0=>e >e >t

| Sm => ADV -> TV_ADV m

end.

(* "Extended conjunction" -- a helper function *)
(* AND a b : TV_ADV n, where a : TV_ADV n and b : t *)
Fixpoint AND (n : nat) : TV_ADV n -> (e -> e -> t) -> TV_ADV n :=
match n with
| 0=>funab=>funxy=>axy/\bxy
| Sm => fun a b => fun adv => AND m (a adv) b
end.

(* Inductive definition of butter with base case BUTTER)
Fixpoint butter (n : nat) : TV_ADV n :=
match n with
| 0 => BUTTER
| Sm => fun (adv : ADV) =>
AND m (butter m) (fun x y => adv (BUTTER x) y)
end.

29

(* "Extended implication" -- a helper function *)
(x IMPLIES n a b : Type with a, b : TV_ADV n *)
Inductive IMPLIES : forall n, TV_ADV n -> TV_ADV n -> Type :=
| implies_zero :
forall (a b : TV_ADV 0), (forall x y, axy -> b xy) -> IMPLIES O a b
| implies_succ :
forall n (a b : TV_ADV (S n)),
(forall adv : ADV, IMPLIES n (a adv) (b adv)) ->
IMPLIES (S n) a b.

(* AND always entails its first conjunct, at any adverbial depth. *)
Lemma AND_implies_first

foralln (X : TV_.ADVn) (B : e > e —> t),

IMPLIES n (AND n X B) X.

Proof.

induction n.

- intros X B. simpl. apply implies_zero. intros x y [H _]. exact H.

- intros X B. simpl. apply implies_succ. intros adv. apply IHn.
Qed.

(* Theorem: dropping an adverb layer preserves entailment *)
Theorem butter_Sn_implies_butter_n :

forall (n : nat) (adv : ADV),

IMPLIES n (butter (S n) adv) (butter n).

Proof.

intros n adv.

apply AND_implies_first.
Qed.

B.2 Semantics for Perceptual Verbs

(¥ Basic imports *)

Require Import Coq.Init.Datatypes.
Require Import Coq.Arith.Arith.
Require Import Lia.

(* Entity type and semantic primitives *)

Parameter e : Set. (* Entity type *)
Definition t := Prop. (* Propositional type *)

30

(* Dependent unit type and event lifting *)
Inductive Unit (p : t) : Set :=

| ast : Unit p.
Parameter EO : forall p:t, Unit p -> e.
Definition E (p:t) : e := EO p (ast p).

(¥ Adverbial modifier type *)
Definition ADV := (e -> t) -> (e -> t).

(* lexical terms for "Mary saw John leave" *)
Parameter LEAVE : e —> t.

Parameter see : e -> e => t.

Parameter john mary : e.

(* Dependent type of intransitive verbs with n adverbial modifiers *)
Fixpoint IV_ADV (n : nat) : Type :=

match n with

| 0=>e >t

| Sm => ADV -> IV_ADV m

end.

(* Inductive definition of leave with base case LEAVE %)
Fixpoint leave (n : nat) : IV_ADV n :=
match n with

| 0 => LEAVE
| Sm => fun adv => leave m
end.

(* Recursively apply adverbs to IV_ADV n -- a helper function *)
Fixpoint apply_advs
(n : nat) (f : IV_ADV n) (advs : nat -> ADV) (y : e) : t :=
match n as n’ return IV_ADV n’ -> (mat -> ADV) -> e -> t with
| 0 => fun £fO _ yO => f0 yO
| Sm => fun f1 advsl yl1 =>
apply_advs m (f1 (advsl 0)) (fun i => advsl (S i)) yi1
end f advs y.

(* Specialized "adverb-stripping" postulate for leave *)
Axiom MP_leave_layered :

31

forall (p : e => e => t)

(n : nat)

(x : e)

(advs : nat -> ADV)
(y : e,

p x (E (apply_advs (n + 1) (leave (n + 1)) advs y)) —>
p x (E (apply_advs n (leave n) advs y)).

(* Multi-layer adverb-stripping for leave: removing m layers *)
Theorem MP_leave_multi :
forall (p : e —> e > t)
(n m : nat)

(x : e)
(advs : nat -> ADV)
(y : e,

p x (E (apply_advs (n + m) (leave (n + m)) advs y)) —->
p x (E (apply_advs n (leave n) advs y)).
Proof.
intros p n m x advs y H.
induction m as [| m’> IH].
- rewrite Nat.add_O_r in H. exact H.
- apply IH.
assert (H.,eq : n + Sm’ = (n + m’) + 1) by lia.
rewrite H_eq in H.
apply (MP_leave_layered p (n + m’) x advs y). exact H.
Qed.

(* general "adverb-stripping" postulate for verb v *)
Axiom MP_general :
forall (p : e -> e -> t)
(v : forall n, IV_ADV n)

(n : nat)

(x : e)

(advs : nat -> ADV)
(y : e,

p x (E (apply_advs (n + 1) (v (n + 1)) advs y)) ->
p x (E (apply_advs n (v n) advs y)).

(* Multi-layered adverb stripping for verb v, remove m layers x*)

32

Theorem MP_general_multi :
forall (p : e -> e => t)
(v : forall n, IV_ADV n)
(n m : nat)

(x : e)
(advs : nat -> ADV)
(y : e,

p x (E (apply_advs (n + m) (v (n + m)) advs y)) ->
p x (E (apply_advs n (v n) advs y)).
Proof.
intros p v n m x advs y H.
induction m as [| m’ IH].
- rewrite Nat.add_O_r in H. exact H.
- apply IH.
assert (H.,eq : n + Sm’> = (n +m’) + 1) by lia.
rewrite H_eq in H.
apply (MP_general p v (n + m’) x advs y). exact H.
Qed.

33

